

WHITEPAPER

EKO-SELO-INBOX

Sustainable Modular Microgrid Settlement

Sustainable Modular Microgrid Settlement

PROJECT STATUS: FUNDED & LAND ACQUIRED

Pre-Seed funding: €100,000 | Land plots: 5,484 m² + Extensions: 20,000+ m² | Status:
Full ownership 1/1, unencumbered

Version 1.0 | February 2026
Šumadija Region, Serbia

Contents

1. Executive Summary
2. Funding & Land
3. Project Overview
4. Technical Specifications
5. Microgrid Energy System
6. Water & Wastewater System
7. Infrastructure & Community Facilities
8. Sustainability & Environmental Aspects
9. Economic Analysis
10. Roadmap & Timeline
11. Conclusion

1. Executive Summary

EKO-Village-inBox is an innovative, fully funded residential project that combines sustainable energy autonomy with modern living comfort. The project has already been funded by private investors with €100,000 in the Pre-Seed phase and has fully acquired, unencumbered land.

Key Features

- 12 autonomous residential units (6 small at 29 m², 6 large at 58 m²)
- Complete energy autonomy through microgrid system
- Independent water supply through deep well
- Central community facilities (150 m²)
- Modular container construction for flexibility and scalability

Project Status: IMPLEMENTATION PHASE

This whitepaper documents a real, funded project with concrete technical specifications and a clear implementation strategy. All information is based on actual planning and investment decisions already made.

2. Funding & Land

This section documents the funding and land acquisition that has already taken place. The project is not in the planning phase, but in implementation.

2.1 Pre-Seed Funding

Funding Round	Pre-Seed
Funding Amount	€100,000
Investor Typee	Private Investors
Status	✓ COMPLETED

2.2 Land Acquisition

The project has two connected plots with a total of 5,484 m² as well as adjacent extension areas.

Main Land Plots

Land Registry No.	5258 & 5259
Land Registry of	Vlaška
Municipality	Mladenovac (Belgrade)
Plot 5258	3,485 m ²
Plot 5259	1,999 m ²
Total Area	5,484 m ²
Ownership Status	Sole ownership 1/1
Encumbrances	None - completely unencumbered
Status	✓ ACQUIRED

Extension Areas

In addition to the two main plots, adjacent land with a total area of over 2 hectares (20,000+ m²) was acquired. This strategic land reserve enables:

- Future expansion of the settlement
- Creation of additional green spaces and buffer zones
- Development of complementary infrastructure (e.g. community gardens)

- Long-term value appreciation of the overall project

Total Land Ownership

Main plots: 5,484 m² + Extension areas: 20,000+ m² = Total: 25,000+ m²

2.3 Strategic Location Selection

The land was selected according to the following criteria:

- Optimal size and geometry for the planned layout
- Availability of groundwater for the deep well
- Good sun exposure for photovoltaic systems
- Connection to existing infrastructure (access roads)
- **Excellent public transport connection: bus stop approx. 200 m away**
- Legally compliant building land designation

Transport Connections

Bus Stop	approx. 200 meters distance
Travel Time to Belgrade	approx. 30 minutes to city center
Car Access	Direct access via paved road

The combination of rural tranquility and urban accessibility makes the location ideal for sustainable living with optimal infrastructure connection.

IMPORTANT: Not a Fantasy Project

The EKO-Village-inBox project is based on real financing and actual land ownership. Funding of €100,000 has been completed. The land plots (Land Registry No. 5258 and 5259 in the Land Registry of Vlaška, Municipality Mladenovac/Belgrade) with a total area of 5,484 m² have been acquired and registered in the land registry as sole ownership 1/1. Additionally, adjacent extension areas of over 2 hectares were acquired. There are no encumbrances, mortgages, or third-party rights. The project is in the concrete implementation phase.

3. Project Overview

EKO-Village-inBox combines modern container architecture with sustainable energy technology to create a fully autonomous residential project.

3.1 Project Key Data

Total Area	5,484 m ² + 20.000+ m ² extensions
Number of Residential Units	12 (6 small + 6 large)
Total Residential Area	522 m ²
Central Facility	150 m ² (Technical + Community)
Green Spaces	~2.500 m ² (12 zones)

3.2 Modultypen

Small Modules (29 m²)

- Base Area: 2 containers (6 m × 4,8 m)
- Configuration: Side by side
- Number: 6 units (Modules 1, 3, 5, 7, 9, 11)
- Ideal for: Singles, couples, home office

Large Modules (58 m²)

- Base Area: 4 containers (12 m × 4,8 m)
- Configuration: 2x2 arrangement
- Number: 6 units (Modules 2, 4, 6, 8, 10, 12)
- Ideal for: Small families, extended living spaces

4. Technical Specifications

4.1 containers Specifications

Basis: Standard 20-foot shipping container (ISO container)

- External Dimensions: ca. 6,0 m × 2,4 m × 2,6 m (L×B×H)
- Usable Area per containers: ~14.5 m²
- Material: Corten steel, weatherproof
- Modifications: Insulation, windows, doors, electrical
- Lifespan: 25+ years

4.2 Layout Arrangement

The 12 residential units are arranged elliptically around the central building. This configuration optimizes:

- Uniform distances to the center
- Optimal sun exposure for all units
- Efficient path and line routing
- Maximum privacy between modules

Distribution:

- North: Modules 1-3
- East: Modules 4-6
- South: Modules 7-9
- West: Modules 10-12

5. Microgrid Energy System

The heart of the EKO-Village-inBox project is the fully autonomous microgrid energy system, which ensures complete independence from the public power grid.

5.1 System Architecture

Decentralized Generation + Central Control

- Each residential unit: Own solar system + battery storage + inverter
- Central building: Main battery + Energy Management System (EMS)
- Microgrid network: Connects all units for energy exchange

5.2 Components per Residential Unit

Photovoltaic System

- Capacity: 3-5 kWp (depending on module size)
- Installation: On container roof
- Annual Yield: ~3.500-5.500 kWh (depending on size)

Battery Storage

- Capacity: 5-10 kWh (Lithium-ion)
- Function: Storage for night hours
- Lifespan: 10-15 years

Inverter

- Capacity: 3-5 kW
- Function: DC/AC conversion + grid feed-in
- Smart Grid capable

5.3 Central Energy Infrastructure

- Main Battery Storage: 50-100 kWh
- Energy Management System (EMS): Intelligent load distribution
- Monitoring: Real-time monitoring of all components
- Backup: Emergency power supply for critical systems

5.4 Energy Distribution

Radial (star) topology:

- 12 underground power cables from center to each unit
- Bidirectional energy flow (feed-in & consumption)
- Intelligent load control through EMS
- Excess energy is stored centrally

6. Water & Wastewater System

6.1 Water Supply

Deep Well

- Depth: 40-80 Meter (depending on groundwater level)
- Capacity: Sufficient for 12 households
- Pump: Solar-powered deep well pump
- Location: At central building

Water Treatment

- Multi-stage filter system
- UV disinfection
- Drinking water quality according to EU standards
- Central water treatment facility

Distribution System

- 12 underground water pipes (radially from center)
- Pressure maintenance through buffer storage
- Separate pipes for drinking and service water (optional)

6.2 Wastewater System

- Decentralized small treatment plants per residential unit
- Alternative: Central plant-based treatment facility
- Greywater recycling for garden irrigation
- Septic tank or infiltration system

7. Infrastructure & Community Facilities

7.1 Central Building (150 m²)

The central building combines technical infrastructure with community facilities and is the heart of the settlement.

Technical Infrastructure

- Main Battery Storage (50-100 kWh)
- Energy Management System (EMS)
- Deep Wellpumpe und Water Treatment
- Server room for data infrastructure
- Workshop for maintenance work

Community Facilities

- Community Lounge: Shared common area
- Bar area: Small counter for social gatherings
- Sauna (optional): Wellness area
- Pool table (optional): Recreation
- Table tennis table (optional): Sports and games

7.2 Pathway System

Optimized footpaths connect all areas of the settlement:

- Ring path: Outer ring around all residential units
- Radial paths: 12 direct connections to the center
- Cross paths: Connections between neighboring units
- Material: Sand-colored, barrier-free design

7.3 Green & Recreation Areas

12 Green Zones (~2.500 m² total)

- 4 corner zones: L-shaped areas with rounded edges
- 8 inner zones: Between residential units
- Northern garden: Extended green space
- Southern park: Larger open space

Outdoor Fitness (Southern Zone)

- Outdoor fitness equipment
- Jogging/walking track
- Stretching area

Children's Playground (Northern Zone)

- Age-appropriate play equipment
- Sandbox
- Seating for parents

7.4 Underground Channels

Each residential unit is connected to the center through 3 underground channels:

1. Power channel: Microgrid connection (bidirectional)
2. Water channel: Fresh water supply
3. Data channel: Fiber optic for internet and communication

8. Sustainability & Environmental Aspects

8.1 Energy Autonomy

- 100% renewable energy (photovoltaic)
- No connection to public power grid required
- CO₂ savings: ~15-20 tons/year (vs. grid electricity)
- Battery storage enables 24/7 supply

8.2 Water Independence

- Own water supply through deep well
- No connection to public water network needed
- Rainwater utilization for garden irrigation
- Greywater recycling reduces fresh water demand

8.3 Modular Construction

- Reuse of shipping containers
- Reduction of construction waste
- Fast construction time (3-6 months)
- Expandability and adaptability
- Fully dismantlable and relocatable if needed

8.4 Green Spaces & Biodiversity

- ~50% of total area as green spaces
- Native planting promotes local biodiversity
- No surface sealing except paths and buildings
- Natural infiltration of rainwater

9. Economic Analysis

9.1 Investment Costs (Estimate)

Item	Cost (EUR)
Land (5,000 m ²)	Acquired ✓
12 container modules (incl. conversion)	180,000 - 240,000
Central building	50,000 - 80,000
Photovoltaics & battery storage	120,000 - 180,000
Deep well & water treatment	20,000 - 30,000
Infrastructure (paths, channels, greenery)	30,000 - 50,000
Planning, permits, miscellaneous	20,000 - 40,000
Total investment (estimated)	420.000 - 620.000

9.2 Operating Costs

Due to energy and water self-sufficiency, running costs are significantly lower than conventional residential settlements:

- No electricity costs (100% self-production)
- No water costs (own well)
- PV system maintenance: ~500-1.000 €/year
- Water treatment maintenance: ~300-500 €/year
- Building maintenance: ~2-3% of investment/year

10. Roadmap & Timeline

Phase 1: Completed ✓

- Pre-Seed funding: €100,000 secured
- Land acquisition: 5,484 m² acquired (Land Registry No. 5258 & 5259, Vlaška/Mladenovac) + 20,000+ m² extension areas (sole ownership 1/1, unencumbered)
- Concept development and technical planning
- Site analysis and feasibility study

Phase 2: In Planning (Q2-Q4 2026)

- Building permit and official approvals
- Detailed infrastructure planning
- Tender and award
- Seed funding round (optional)

Phase 3: Construction Phase (2027)

- Site development
- Deep well drilling
- Installation of underground channels
- Construction of central building
- Setup and conversion of container modules
- Installation of PV systems and battery storage
- Creation of paths and green spaces

Phase 4: Commissioning (2027/2028)

- Test runs of all systems
- Calibration of Energy Management System
- Ready-to-occupy handover of residential units
- Resident move-in and community building

11. Conclusion

EKO-Village-inBox is a fully funded, real project with concrete technical specifications and a clear implementation plan.

Project Status: Implementation

- ✓ **Funded: €100,000 Pre-Seed capital**
- ✓ **Land secured: 5,484 m² (Land Registry 5258 & 5259, Vlaška/Mladenovac) + 20,000+ m² extensions, sole ownership 1/1, unencumbered**
- ✓ **Technically mature: Detailed planning completed**
- **Next step: Building permit and implementation**

Core Advantages

- **100% energy self-sufficiency through microgrid system**
- **Complete water independence**
- **Modular, flexible construction**
- **Community-oriented living**
- **Ecologically sustainable and CO₂-neutral**
- **Low operating costs**

EKO-Village-inBox combines technological innovation with ecological responsibility and creates a future-proof, autonomous living space for a modern community.

Contact & Further Information

EKO-Village-inBox Project
Šumadija Region, Serbia
Web: www.eko-village-inbox.rs (coming soon)

© 2026 EKO-Selo-inBox. All rights reserved.